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New Measurements of the Elastic Constants of ADP, and Their Relation
to the Theories of Crystal Elasticity

By N. JoeL axpD W. A. WoOSTER
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Recerved 28 October 1959)

Some of the adiabatic elastic constants of ADP have been remeasured by means of Bergmann-—
Schaefer elastograms. The chief aim was to obtain the best possible value of the ratio cg/cs; in
order to establish whether ADP agreed or not with the classical theory of crystal elasticity. The
elastograms were measured not only along two principal axes and along the 45° direction, as has
been customary so far, but also in many directions in the same plane. These measurements were
used for determining the ¢;; by means of least-squares methods. The results are:

€1 =669, €3, =328, ¢;;=199, c4y =88, c55=83(0-10'° dyne cm.~?).

The ratio cy4/css is 1-06 +0-02, thus confirming the validity of Laval’s contention that 21 elastic
constants are not in general sufficient for describing the elastic properties of crystals.

1. Introduction

Laval’s work (1951, 1952, 1957) indicated that the
number of elastic constants required to describe the
elastic properties of a crystal is greater than the
number required by the classical theory of Voigt and
the lattice theory of Born & Huang (1954). This was
first tested experimentally by LeCorre (1954) who
made a determination of the elastic constants of ADP,
class 42m, and found a difference of 369 between
two elastic constants which are equal on Voigt’s
formulation:

cas=10-3 +0-6, ¢55="7-6 4 0-5 (0-101° dyne cm.~2) .

Zubov & Firsova (1956) remeasured the elastic con-
stants of quartz and found differences of just over
1% and 39 respectively where the classical theory
demanded none:

Caa= 58‘5, 655257'7; Ci14= 18'3, Ci7= 17-7.

Both these determinations were made by means of
Bergmann-Schaefer elastograms. In those cases where
it can be used this seems to be the best method of
obtaining good relative values for the elastic constants.

We made attempts to determine which of the 32
crystal classes are more likely to show any departures
from the classical formulation. We showed (Joel &
Wooster, 1958a) that, on the basis of a fundamental
principle, the number of independent elastic constants
reduces in the general case from Laval’s 45 to 39.
There appears to be no difference between the old and
the new theories for isotropic solids and for the cubic
classes 432, 43m, m3m. The assumption on which
these results were obtained was either:

(a) rotations of undeformed elements of volume do
not contribute to the strain energy; that is, the strain

energy of a crystal is invariant under rotations of
undeformed elements of volume, or

(b) body couples can arise in a given element of
volume subjected to strain only if this strain is more
than a simple rotation of the volume element.

One of the consequences of the new approach, with
its increased elastic matrices, is that body-couples
may be acting in a deformed element of volume to
balance the non-symmetric stress tensor. It is possible
that, if consideration is given to the mechanism
responsible for the appearance of these body-couples,
some further restrictions may arise on the number of
independent elastic constants, or on the crystal classes
affected by the new theory. For instance, a tentative
hypothesis (made plausible by the structural features
of those crystals which have so far shown departures
from the classical theory) could be that helicoidal
features in the crystal structure might be the respon-
sible mechanism (Joel & Wooster, 1957). This would
lead to the result that, through symmetry require-
ments, the effects would cancel out in all crystal
classes except the 11 enantiomorphous ones and the
four classes: m, mm, 4 and 42m. These 15 classes are
the same as those which can show optical activity.
Thus there would be only 14 classes available for
testing the new theory, as the enantiomorphous class
432 is excluded on the more general principle given
above.

The only crystals belonging to any of these 14
classes that we know to have been studied by the
Bergmann-Schaefer method are: quartz (32), 4DP
and KDP (42m), sodium chlorate (23) and Rochelle
salt (222). And there are not many more that lend
themselves to study by this method. Quartz was
studied by Nomoto (1943), ADP and KDP by Zwicker
(1946), sodium chlorate and Rochelle salt by Jona
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(1950), all of them before the publication of Laval’s
work, and at a time when any small discrepancies
between certain elastic constants expected to be equal
would have been attributed to experimental errors.

Then came the work of LeCorre (1954) and of
Zubov & Firsova (1956) mentioned above, on ADP
and quartz respectively. They did find a departure
from Voigt’s formulation. But the difference found by
LeCorre between csas and css (quoted above) seems
rather large to have escaped Zwicker’s attention in
1946. Therefore it was considered of interest to re-
determine the elastic constants of ADP by means of
Bergmann-Schaefer elastograms, with special empha-
sis on the ratio css/css. This interest was increased by
the fact that on carefully remeasuring Zwicker’s YZ*
elastogram of ADP, a difference of about 8% was
found between cqs and css (Joel & Wooster, 19585,
in this paper some details are also given on the
generation, interpretation and calculation of the elasto-
grams which need not be repeated here.)

2. Apparatus

The general principles of the method are well known
{Bergmann, 1954). Only such details as are required
by the description of our apparatus will be given here.

The electronic equipment consists of two parts:

(i) A power supply which is fed from the mains
(200 V. a.c., 50 Hz.) and delivers 800 V. d.c. to the
oscillator.

(ii) The oscillator, which is shown diagrammatically
in Fig. 1. The characteristics of its resonant circuit are
such that if a negligible capacitance is placed between
the two output terminals, the frequency range is from
55 to 9-8 mHz. But with the quartz plate in place
these frequencies become smaller, and in our work we
used a range from about 4-8 to 7-0 mHz. The power
output of the oscillator can be regulated in four steps,
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Fig. 1. Circuit diagram of the oscillator B, 5 k2 W.W.;
R, 10kQ W.W.; R; 750 Q W.W.; R, 100 Q W.W.; r, 47 2;
ry 12 25 15 120 2; 7, 150k 2; C, 8 uF.; C, 600 pF. (15kV.);
Cy 22 pF.; C, 0-1 uF.; mA. 0-250 mA.; valves EL 34 V.
800 v.

* Crystallographers normally use X, Y, Z to denote crys-
tallographic axes whereas in work involving tensors the axes
are denoted X,, X,, X;. No attempt is made here to avoid
using both systems.
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and under working conditions the mA.-meter (Fig. 1)
reads between 100 and 200 mA.

The frequency of the elastic waves for every elasto-
gram was measured first, approximately, by means of
an absorption wave meter (accuracy about 19,), and
then with a frequency meter of the beat frequency
type, model BC. 221-M made by Bendix Radio
(accuracy better than 0-019%).

For the purpose of observing the diffraction pat-
terns, we found it a great advantage to use the
‘optical diffractometer’ the main characteristics of
which are shown in Fig. 2(a). A more detailed descrip-
tion of a similar instrument can be found in a paper
by Hughes & Taylor (1953).

The source of light S is a 250 W. mercury vapour
lamp type ME/D, (Mazda); by means of a filter the
orange line of the mercury spectrum (1=>5780 A) was
selected. The diameter of the pinhole P is of the order
of 0-02 mm., but in our experiments the spots in the
focal plane F of the objective lens L’ are larger, of
the order of 0-:05 mm., due to the diffraction introduced
by the limited cross section of the crystal. Both lenses
L and L’ have a long focal length (about 130 cm. in
this instrument): the longer the focal length of L,
the better the resolution; and the longer the focal
length of L', the larger the size of the diffraction
pattern at F. Our elastograms measure about 3 to 4
mm. across.

The main advantage of this design of the diffracto-
meter is that the mirror M makes it possible to manip-
ulate the crystal C' Fig. 2(b) and the iris diaphragm D
while looking through the eyepiece £ at the elastogram

E
L/
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(@)

Fig. 2. (a) The optical diffractometer. (b) Arrangement of the
crystal C on the oscillating quartz plate Q.
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located at F. This facilitates the setting of the dia-
phragm relative to the crystal. It is necessary to keep
out all stray light, select the largest possible diameter
that will give a good image, and avoid regions of poor
optical quality in the crystal should they exist. When
the crystal and diaphragm are in position, it is possible
to adjust the frequency of the oscillator (by means
of its variable condenser) until the best elastogram
can be seen through the eyepiece.

If the crystal under investigation is itself piezo-
electric, it can be excited directly, without attaching
a quartz plate to it. But, because the intensity distri-
bution on the elastograms is more uniform when the
elastic waves in the crystal originate from an attached
quartz plate, we used this indirect excitation of the
crystal throughout our work. We have used several
sizes of quartz plates; the best results were obtained
with one of area a little larger than that of the contact
surface and of thickness about 5 mm. The plates were
cut perpendicular to the X axis, and thin coatings of
gold or silver formed the electrodes. The thickness of
these electrodes is such that the resistance of one of
them, measured from one end of the plate to the other,
is of the order of 1 Ohm.

It was found that the quartz plate was best at-
tached to the crystal by means of a thin layer of the
silicon grease used in vacuum work. Slight pressure
and a little to-and-fro sliding motion of the crystal
on the quartz plate ensures good contact, provided
that both surfaces are sufficiently flat. The quality of
the contact can be checked by looking obliquely at
the contact surface through the crystal.

P

Fig. 3. Diagram of the arrangement for supporting the crystal,
C': P, base plate, S, screws clamping the arms which support
the crystal; H, aperture in P; D, iris diaphragm; @, the
quartz oscillator.

The crystal rests on the ends of three small flat-
topped rods that can slide on the plate P (Fig. 3)
and can be kept in position by means of the screws S.
In this way, specimens of different sizes and shapes
can be used. A circular hole A in the plate P allows
the passage of the light, and on P rests a holder for
the iris diaphragm D.
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The elastogram formed at F (Fig.2(a)) can be
photographed by placing in its plane a photographic
plate or film. We found it convenient to use a film
holder (with a shutter) which could be attached to the
microscope and which took short strips of 35 mm. film
capable of recording 4 or 5 successive elastograms.
The film used was Ilford HP3. The faster film, HPS,
was also tried, but it did not prove to be more useful
than the HP3 because it showed a more intense back-
ground due to stray light.

3. The specimen of ADP

The specimens must have two flat, optically polished,
parallel faces through which the light enters and
leaves the crystal, and also a flat face, perpendicular
to the other two, to which the driving quartz plate is
attached. The shape of the specimen can have an
important effect on the intensity, though not on the
position, of the spots in the elastogram. This is due to
the reflection of the elastic waves on the lateral surface
of the specimen, which is in contact with the air.
The acoustic impedance of ADP for its longitudinal
waves is of the order of 106 c.g.s. units, while that of
the air surrounding it is about 40 c.g.s. units. Therefore,
total reflection occurs (reflectivity at normal inci-
dence, under these circumstances, differs from unity
by only 10-4). The reflected waves are not only
longitudinal but also transverse, and it is precisely
these transverse waves, particularly those travelling
along the axes Y and Z, which are required for the
present work. On the elastograms, the inner curve is
caused by diffraction at the longitudinal elastic waves,
and the outer curve (or curves) by diffraction at the
transverse (shear) waves.

12404

Fig. 4. Shapes of optical glass which were tested for the
influence of the geometrical form on the diffraction pattern.

The best elastograms are obtained when elastic
waves travel in all directions within the plane per-
pendicular to the direction of travel of the light. To
achieve this, the lateral surface of the specimen
(on which the longitudinal waves coming from the
quartz plate are reflected) must be a curved surface
generated by straight lines perpendicular to the two
parallel end faces of the specimen. In order to find the
best shape we tried specimens of optical glass of dif-
ferent cross sections, as shown in Fig. 4. Specimen (a)
gives very strong spots corresponding to the longitu-
dinal elastic waves travelling in directions parallel to
the sides of the square, and very little of the elastic
energy goes into transverse waves. Specimens (b) and
(c) were tried in order to compare the reflections at
the inclined faces with the theoretical predictions.
Their elastograms show very prominently the spots
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due to the waves reflected from the side faces (both
longitudinal and transverse), and if more power is put
in then more spots appear. But the elastograms are
not uniform but rather ‘spotty’. Specimens (d) and (e)
give good continuous elastograms, particularly (d).
Spangenberg & Haussiihl (1957) and Haussithl (1957)
recommend the ‘gothic arch’ (e), but under the condi-
tions of our experiments we found that the cylinder (d)
gave better results.

Fig. 5. Diagram of the shape, size and orientation of the
specimen of ADP. H=32 mm., D=36 mm.

A specimen of ADP was ground to the shape (d),
with the crystallographic orientation shown in Fig. 5:
the cross section is the plane Y Z, which is the setting
required for the determination of the ratio css/css.
With this orientation, the waves that contribute to
the two curves of the elastogram are quasi-longitudinal
and quasi-transverse respectively, and their amplitude
vectors (vibration directions) are parallel to the plane
YZ. The axes Y and Z, in the plane of the cross
section, are both at 45° to the flat surface in contact
with the quartz plate. This orientation of the axes
Y and Z was chosen because it can give rise to shear
waves travelling along ¥ and Z.

As even the elastogram of this cylindrical specimen
did not show the regions that are most important for
this work—namely the portions of the outer curve
near the ¥ and Z axes—specimens of the shape and
orientation shown in Figs. 6 and 7 were made. These
should show prominently the points 7'y and 7', at which
the outer curve of the elastogram intersects the Y
and Z axes.* Neither of these specimens gave the
points Ty and 7' in spite of the existence of the cor-
responding elastic waves along Y and Z. This be-
haviour of both the cylindrical and the two prismatic
specimens can only be attributed to the elasto-
optical properties of the crystal. Besides, the elasto-
grams of the two prismatic specimens were not at all
uniform and rather spotty, as could be expected.

The work described below was therefore carried out

* Details of the calculations that lead to the appropriate
angles in these specimens together with other relations be-
tween the elastograms and the reflected waves will be given
elsewhere.
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on the cylindrical specimen (Fig. 5) which, even if it
does not show the spots Ty and 7%, is the one that
gave the most complete and uniform elastograms. Its
dimensions are: D=36 mm., =32 mm., which give
for the longitudinal waves incident on the curved
surface a variable angle of incidence e ranging from
0° to about 40°. (¢~ 32° is the angle of incidence
required for the reflected shear waves to travel along
Y and Z.) The height of the cylinder, parallel to the
direction of travel of the light, is 25 mm., and the
axes Y and Z are disposed symmetrically to the flat
side-face. The dimensions of this specimen would
permit the observations to be carried out with a
circular diaphragm of diameter up to about 30 mm.
In fact, the homogeneity of the crystal and the quality
of the optical polish were so good that a diaphragm
as large as 25 mm. could actually be used, giving very
good resolution. The two optically polished faces were
parallel to each other within less than 1’ of arc;
their orientation relative to the crystal lattice was
checked by means of X-ray diffraction and found to
be correct, that is, parallel to the planes (100), within
less than 10 of arc; the axes Y and Z were in their
45° direction within less than 15’ of arc, but this is
not an essential point because the measurements on
the elastogram can be made independently. The only
important requirement is that the two parallel end
faces of the crystal should be parallel to YZ and per-
pendicular to the direction of travel of the light. This
last condition, the setting of the crystal on the dif-
fractometer, was checked by means of an inclinometer
(precision spirit level provided with a micrometer
screw) which is accurate to 30" of arc. It was possible

Xy =

Fig. 6.

Fig. 7.

Figs. 6 & 7. Diagrams of shapes of crystal chosen to accentuate
spots corresponding to transverse waves T',, T3, travelling
along axes X, and X; respectively.
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to keep the crystal in its correct orientation within
less than 5’ of arc.

So, the accuracy of the orientation of the specimen
in the beam of light is well within the experimental
requirements. A quantitative discussion of the errors
is given in Section 6, after the results.

4. Recording of the elastograms

Two of the elastograms recorded with the cylindrical
specimen are shown in Fig. 8(a), (b): (a) with a short
exposure time, 1 sec.; (b) with a longer exposure time,
30 sec. The latter was made in six parts of 5 sec. each,
with 5 min. interval between consecutive exposures.
This was done because, under the conditions of our
work, after more than about 8 sec. the image began
to deteriorate owing to inhomogeneous heating of the
crystal: a temperature gradient was formed, with the
warmer end next to the quartz plate. It was also
noticed that this effect was considerably greater on
the ordinary than on the extraordinary beam of light;
this could be checked quite simply by rotating a
polaroid placed between the microscope eyepiece and
the eye. Therefore a good quality polaroid was placed
near the image plane just below F (Fig.2(a)) in a
position such that it only transmitted the light with
amplitude vector parallel to the Z axis of the crystal.
This caused an increase in the exposure time by a
factor of more than 2, but it also improved the
resolution.

5. Interpretation of the elastograms

In a medium with adiabatic elastic stiffnesses c,g,.,
the velocities, v, of the three elastic waves with wave-
normals parallel to the unit vector q(qi, g2, gs) are
given by:

Au—Q Are Az !
Ao Ass—Q Aos =0 (1)
Ais Asas A—Q

where:

Aay'= %Ca,syo%% (OC, ﬂ’ Vs 6= ]-: 2, 3)a

o is the density of the crystal,

@ = pv? is the elastic stiffness for each of the three

waves.

The directions of the amplitude vectors u of the
three waves, that is, their vibration directions, are
given by the set of three linear equations:

(A1 —Q)ur + Arous+ A1zus =0
Arour + (Aaz— Q)us + Aogus =0 2)
Azzus + Aszus+ (Ass— Qus=0

where @ has to be given in turn the value of each of
the three roots of equation (1).

The elastic matrix of 4DP has 9 independent
components in the Laval theory. But, as mentioned
in Section 1, we have shown that they are not all
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independent. There are two relations between Laval’s
constants for ADP:

Ca7=%(Caa+ Cs5) (3)
Ce9=Ce6 (4)

The elastic matrix becomes:

11 12 13
12 11 13
13 13 33 . . . .
4 . . 41 ..
55 . . 47 . (5)
. . 66 . . 66
47 . . 55 .
47 . . 44 .
66 . . 66

where the relation (3) involving ¢4 has to be kept in
mind.

The wave-normals are restricted to the YZ plane,
so that g1 =0. Let us substitute go=m=cos ¢, gz=n=
sin ¢, where ¢ is the angle between the wave-normal
and the Y axis. Thus the 4,, become:

A11=ceem?+ C4an® = C4a+ (Co6 — Cas) COS2 @
Aoz =c1m?+ cqan®=c4a+ (€11 — C4a) cOSZ @

Aszz=cs5m2+ C33n?=C33 — (€33 — Cs5) €OSZ (6)
Az2z=(c13+ car)mn =} (c13+ ca7) sin 2¢
Ap=A413=0.

In view of the relation (3) and the expression for
Aqez in (6), it will be convenient to introduce:

c=ci3+ $(cas+Cs3) . (7)

The elastic waves have the frequency » imposed by
the oscillator, and therefore their wave-length A is:

A=v/v=(Q/0)}/». ®)

The elastic wave-fronts give rise to Bragg reflexions
and the Bragg angle § is given by the relation

2Asinf=4. 9)

The angle 0 is of the order of a few minutes of arc
only as the ratio A/ A is of the order of 10-3. Therefore,
for all practical purposes, the waves giving rise to the
diffraction pattern have their wave-normals perpen-
dicular to the optical axis of the system.

It was shown by Fues & Ludloff (1935) that the
deviation 20 of any diffracted beam is independent
of the refractive index of the crystal for the light being
used. The refractive index on the one hand decreases
the wavelength of the light in the crystal, with a
proportional decrease in sin 6; but on the other hand
it gives rise to refraction of the diffracted beam on
leaving the crystal. For such small angles as occur in
this case, the two effects compensate. It is because of
this that both the ordinary and the extraordinary
vibrations give rise to the same diffraction patterns.

If the lens L’ (Fig. 1) has a focal length f, the cor-
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@ (b)

Fig. 8. Elastograms of ADP at v=4980:8 ke.

(a) exposure time | see. (b) exposure time six intervals of 5 sec. each.

|To face p. 420
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responding separation r between the image of the
pinhole and the diffracted spot is:

r=20f=Af| A= Afvjo=Afv(0/Q)}.

From this formula it follows that if on an elastogram
the diametral distance 2r between symmetrically op-
posed spots is measured, the elastic stiffness @ is:

Q= A2f2y2p/r2. (11)

It can be seen that for the relative values of the
elastic constants that can be obtained from one elasto-
gram, the only errors involved are those occurring in
the measurements of 2r, (4Q/Q= —2Ar[r). If different
elastograms, taken with different frequencies, have to
be compared, the only additional error which must be
considered is that in ». The frequency » was measured
with an accuracy better than 0-019,, and therefore it
can be said that the accuracy of our ratio csu/css and,
in general, of the relative values of @, depends only
on the accuracy of the measurements of 2r. For this
reason this method is the most suitable for the purpose
of obtaining the best possible value for the ratio
Ca4/Cs5.

In the course of the work, several elastograms had
to be calculated and drawn, and the appropriate scale
was found to be such that

Q=1013/Rz . (12)

From (11) and (12) it follows that the scale factor
relating R and 27 is:

R=9vy.2r.
y = (103/0)}/(2Afv).

¢, A wnd f are constant throughout this work; their
numerical values are:

A = 5780 x 10-8 em.

(10)

(13)
(14)

f = 1320 cm. (+0-5 cm.).
o = 1-790 g.cm. -3,
Hence
y = 154-9/v x 108, (15)

The elastograms of Fig. 8 were taken with »=
(4980-8 + 0-2) kHz., so that for them:

y=31-10. (16)

The results of the measurements of the diameters
2r; and 2rp in a given direction in the plane YZ
(Fig. 8) are used to calculate first R, and Rz by means
of (13) and (15), and then @1 and Qr by means of (12).

These two values of @ are, according to (1) and (6),
the roots of the equation

(d22—Q) (433 — Q) — 433 =0 . (17)

Along the Y axis, Qr=c11 and Qr=cs5, while along
the Z axis, @r=cs3 and Qr=cas. In all other directions
in the plane YZ, Q. and Qr are functions of the
5 stiffnesses c11, ¢33, Cas, €55 and c.
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Measurements on the inner curve along the axes
Y and Z, therefore, provide the values of ¢11 and css.
The values of c4s and c¢ss cannot be obtained as directly
as the previous ones, for the reasons already stated.
But a study of the equation of the elastogram showed
that it was possible to devise a good extrapolation
scheme on the following lines.

Equation (17) can be written:

Q2— (Aso+ As3)Q + Aoz Asz— A%, =0 (18)
and it follows that:
QL+ Qr=A22+ Ass . (19)

From (6) and (19), and by introducing the para-
meters
g = ci1+Cs5
h = csz+cas, (20)
it follows that

QL+ @Qr=h+(g—nh) cos?@. (21)

So, if 27 is measured in several directions for both
the inner and the outer curve, and @+ Qr is plotted
against cos? ¢, a straight line should be obtained; and
extrapolation to cos2@=1 and 0 gives the values of
g and % respectively. Instead of plotting the straight
line, g and % can be calculated more accurately from
a least-squares solution of a large set of linear equa-
tions in two variables in the following way:

Equation (21) can be written:

m2g+n2h=Qr+Qr . (22)

Each measurement gives one set of data
(m2’ nZ’ QL+QT)

and corresponds to one equation. The standard method
can now easily be applied (see for instance Topping,
1955).

Having thus obtained the values of ¢ and 4, the
stiffnesses css and css follow then immediately from
equations (20) as c¢1y and c33 have already been ob-
tained directly. Details of these measurements and
calculations will be given in Section 6.

There is another way of calculating cas and css from
our data, which does not require the previous measure-
ment of ¢1; and cs3: the five parameters of the equation
of the elastogram are determined directly by means
of a least-squares computation in five wvariables,
making use of the large number of measurements for
Q. and Q7 in different directions. But the coupling
between the stiffnesses ci; is such that if they are taken
as variables the calculation becomes far too com-
plicated. But a very simple way of dealing with this
problem was found as follows:

Equation (18) can be written with the help of (6):

@2 —[(c11 4 55)m? + (Caz + caa)n2]Q + cr1c55m?

+ C33C44n4 + (Ca4Cs5 + C11C33 — 2)mPn2 =0 (23)
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and by substituting:

C11+Css=au
Caz+Caa =0z

C11C55 =QA3 (24)
€33C44 = Q4
€11€33 + CaaCs55 — C2 =05
equation (23) becomes:
m2Qa; +nPQaz — mias — niag—min2as = Q2. (25)

The five parameters a; can be calculated by means
of a linear least-squares computation, and then the
¢y follow from (24). Details of these calculations will
be given in Section 6.

6. Measurements and results

The measurements were made with a travelling
microscope which could be read to 0-001 mm., and
in order to be able to measure 2r in any desired direc-
tion, the elastogram was placed on the rotatable stage
of a microscope. The magnification of the spot or
line was 46. To test for any effects, due to the con-
traction of the photographic film or to distortions
caused by any part of the optical train, some measure-
ments were performed using a glass cube as the
diffracting body. Three measurements of the diameter
of a ring, 2-832 mm. across, were taken along the
length of the 35 mm. strip and three corresponding
measurements were made across the strip. None of
these six measurements differed from the mean value
by as much as 0-002 mm. We may therefore take this

value as the possible error in any one measurement,

and any difference in the shrinkage of the film along
and perpendicular to its length may be neglected.

It is necessary to ensure that the two readings used
for a determination of 2r are actually taken at sym-
metrically opposed points, which require (i) that the
centre of the elastogram coincides with the centre of
the revolving stage, and (ii) that during the travel of
the microscope, the fiducial mark used for the settings
(intersection of crosswires) actually goes through the
centre of the elastogram. This could be achieved with
an error of just less than 0-01 mm. Then it is necessary
to determine the settings of the stage that correspond
to measurements along Y and Z; this could be done
by making repeated measurements around these axes
until equal values were obtained for readings taken at
symmetrical positions. 277 (outer curve) was measured
on elastograms such as Fig. 8(b); while 27, (inner
curve) was measured mainly on elastograms such as
Fig. 8(a). In some cases, measurements of both 2rp
and 2r; could be made on the same elastogram.

Those measurements were made first which gave ¢
and cgg directly. Several elastograms such as Fig. 8(a)
were measured, and each elastogram was measured
several times. The readings on the travelling micro-
scope were taken 10 times and from their average a
value of Q (cu1 or cs3) was calculated. The results of
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twelve independent determinations made on three
different elastograms give:

c33=(32-8 + 0-04) x 1010 dyne cm.—2,
c11=(66-9 + 0-12) x 101 dyne cm.~2,

In order to apply the ‘gh’ procedure (equations
(20), (21), (22)), measurements of 2r; and 277 in several
directions in the plane YZ had now to be made.
These were made in steps of 3° in @ (cos p=m), Fig. 9.
In each position, between six and ten readings were
taken on the travelling microscope and averaged.
Furthermore, the results quoted for a given value of
@ are, whenever possible, averages of results obtained
in the four positions: ¢, 180—¢, 180+ @, 360—¢
(Fig. 9). On the outer curve, for any given ¢, these

X3

Fig. 9. The four different positions of tho wmvmg ngﬁ ab

which measurements were made for a given value of .

four values hardly ever differed by more than 0-015
mm., usually less than 0-01 mm. Table 1 shows the
results of one typical set of measurements. The corre-
sponding graph of Qr+Qr against cos? ¢ is shown in
Fig. 10.

As R is about 30 times 2r (formulae 13 and 16),
it follows that the uncertainty in the values of R
given in mm. in Table 1 is of the order of 1 unit of
the first decimal figure. As the values of 2rp are
larger than those of 2r., and also because the inner
curve always happened to have some regions of poor

oteor
80
| ¥4
70 el
60 c ..
50 e
A
40 3
10 08 06 04 02 0-0
X2 cos2 @ X,

Fig. 10. @1+ Q7 plotted against cos? @, Set 2,



Table 1. Radii of longitudinal and transverse curves on the elastogram of Fig. 8,
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together with the corresponding calculated values of Qr and Qr

@ 2ry, 2rp Ry Rp
9 1-253 3-472 39-0 108-0
12 1265 3-438 39-3 106-9
15 1-273 3:390 39-6 105-4
18 1-288 3-328 40-0 103:5
21 1-301 3-270 40-5 101-7
24 1-316 3-211 40-9 99-9
27 1-339 3-160 41-6 98-3
30 1-360 3-108 42:3 96-7
33 1-378 3-045 42-9 94-7
36 1-408 2-990 43-8 93-0
39 1:440 2-936 44-8 91-3
42 1-463 2-895 455 90-0
45 1-500 2-863 46-6 89-0
48 1:531 2-850 47-6 88-6
51 1-572 2-834 48-9 88-1
54 1-598 2-836 497 88-2
57 1-629 2-843 50-7 88-4
60 1-660 2-867 51-6 89-2
63 1-694 2-903 527 90-3
66 1-720 2-952 53-5 91-8
69 1-733 3-016 539 93-8

QL Qr QL+Qr cos? @
65-7, 875 743 0-9755
647, 8-75 73:5 0-9568
63-7, 9-00 72-8 0-9330
62-5, 9-34 71-8 0-9045
60-9¢ 9-67 70:6 0-8716
59-Tg 10-02 69-8 0-8346
577, 10-35 68-1 0-7939
55-84 10-69 66-6 0-7500
543, 11-15 655 0-7034
5214 11-56 637 0-6545
49-8, 12-00 61-8 0-6040
483, 12:35 60-6 0-5523
46-0q 12-62 58-7 0-5000
44-1, 1274 56-9 0-4477
41-8, 12-88 54:7 0-3960
40-4, 12-85 53-3 0-3455
38-9, 12-80 51-7 0-2966
37-5¢ 12-57 50-1 0-2500
36-0, 12-26 48-3 0-2061
34-9, 11-87 46-8 0-1654
34-4, 11-37 45-8 0-1284
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resolution, the maximum errors AQ¢ are smaller than
the AQr. In the regions of small ¢, (QL ~ 60), AQL is
of the order of 0-3; while for large ¢, (Qr ~ 35), 4Q:
is about 0-1. On the other hand, AQr is about 0-02
to 0-03 (for @r ~ 9 to 12).

Three independent sets such as that shown in Table 1
were measured and evaluated. In each of them the
elastograms were recentred and the procedure outlined
above was followed. The parameters ¢ and % were
calculated by means of a least-squares solution of
simultaneous linear equations (2 variables, 21 equa-
tions in each set). The results are, forg: 75-3, 75-1, 75-2;
and for h: 416, 41-6, 41-5, respectively. A statistical
analysis of the residuals of the least-squares computa-
tion shows that within each of the three sets the
standard deviations of g and % are just below 0-1,
which is of the order of magnitude of the differences
between the results of the three sets. A factor that
may contribute to the differences between the results
of the three sets is a possible small difference in the
orientation of the elastogram for the measurement
of 2r. The final values of the errors of ¢ and & are
those calculated from the averaging of the results of
the three determinations, namely:

g=75240:06; h=41-6+0-04.

It follows that:
Caa=h—c33=88+0-08 ,
css=¢g—Cc11=83+0-18.

The larger error in c¢ss derives mainly from the error
in ¢11(40-12). Fortunately it was possible to reduce
it in the following way: in some elastograms the
outer curve nearly reaches the Y axis; it is possible
to ascertain on them the value of 2r along the Y axis,
with less accuracy than the other measurements, but
still with sufficient accuracy to obtain a better value
of ¢s5. In this way the error in ¢ss was reduced to 0-09.

(For instance, 2rr, = (3:53 £ 0-02) mm., with »=4-9782
mHz., y=31-12, gives @ =cs5=28-28 + 0-09).

Also the stiffness ¢ was calculated. This was done
from the values of @r in the region between ¢=36°
and 54°. In this region (around 45°) any possible errors
in c44 and css have the least effect on ¢. The value
obtained is 28-4 + 0-2, From the definition of ¢ (7) and
the values of ¢, cas and css, it follows: ¢13=19-9 +0-3.

Then the ‘a;’ calculation was carried out (equations
(24) and (25)). The same experimental data used for
the ‘gh’ calculation could be used here. It was thought
first that, as the relative errors of the @r are smaller
than those of the @1 and also because the outer curve
is more sensitive to a change in ¢4 and c¢ss, it would
be better to use the Qr values only. This was done,
and the values obtained for the a;—and hence for the
cij—were quite far from the correct ones. This is a
consequence of fitting the outer curve only, and neg-
lecting the information contained in the inner curve.
The residuals for the outer curve are thus very small
and give an illusion of accuracy; but if they are cal-
culated for the inner curve as well, they are quite
large. Therefore, this calculation must make use of
both @7 and @r. Instead of 21 equations there are 42;
and if the measurements of Q. along Y and Z are
added (ci1 and cs3), the number of linear equations
becomes 44 (with the 5 variables, a;).

The solutions, for the same three sets of data used
in the ‘gh’ calculation, are given in Table 2.

Table 2. Results of three separate determinations
of the values a,. . .as

(1) 2 (3

a 7522 75-09 75-22
a, 41-69 41-78 41-46
ag 556-5 557-0 553-8
a 294-6 298-9 284-8
as 1454 1443 1465
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The values of the c;; follow by means of (24) and (7);
they are given in Table 3.

Table 3. Results of the determinations of the five
elastic constants by the ‘gh’ and ‘a;’ methods

‘gh’ ‘a;’ Averages

e e
w ) @ @ M @ @ g e
6, — — — 66-9 66-8 67-0 66-9 669
Cgg — — — 327 326 328 32-8 327
6y — — — 198 198 198 199 198
cy 88 88 87 9-0 91 87 8-8 89
c; 84 82 83 83 83 83 83 8-3

In comparing the results of ‘gh’ with those of ‘a’,
it should be noticed that the second one has the ad-
vantage that it is in principle a more direct approach ;
but it gives the same weight to all the data. (It is of
course possible to assign weights to the different
measurements, and introduce them in the calculations;
but this was thought not to be necessary, as the ‘gh’
method was available.) The ‘gh’ method, on the other
hand, has the advantage of using directly the ac-
curately determined values of ¢i; and cgs and this
increases the accuracy of ¢4 and css.

With the values of ¢;; thus obtained it is possible to
calculate the stiffnesses Q1 and @r for the same direc-
tions in which they have been measured in order to
compare the calculated values with the experimental
values. In this comparison, more importance should
be attached to @ (the outer curve), not only because
the relative errors in the measurements of 2rr are
smaller, but also because the outer curve is more
sensitive to variations in csu and c¢s; than the inner
curve. Table 4 gives the experimental values of Qr
for each of the 3 sets of measurements (1, 2 and 3),
and three calculated sets: (a) the elastic constants
determined by us with the ‘gh’ method; csu=88,

Table 4. Experimental and calculated values of Qr

Experimental Calculated

® (1) (2) (3) Average (a) ®) ()

9 857 8:57 8-55 8-56 8:56 876 8-56
12 873 875 873 8-74 8:76 8-95 8-75
15 9-00 9:00 899 9-00 9-01 9-19 8-99
18 9-32 9-34 9-34 9-33 9:30 9-48 9-30
21 965 9-67 9-62 9-65 9-64 9-80 962
24 998 10-02 9-98 999 10-00 10-16 10-00
27 10-37 10-35 10-35 10-36 10-39 10-533 10-39
30 10-74 10-69 10-76 10-73 1079 10-92 10-78
33 11-18 11-15 1I1-21 11-18 11-20 11:31 11:19
36 11-61 1156 11-54 11-57 11-58 11-69 11-57
39 12-02  12-00 11-98 12:00 11-96 12:04 11-92
42 12-.35 12-35 1226 12-32 12:30 12:36 12:24
45 1260 12-62 12-60 12-61 12-57 12:61 12-51
48 1277 1274 1274 1275 1278 1280 12:70
51 12-86 12-88 12-86 12-87 12-90 12-89 12:79
54 12-86 1285 12:93 12-88 12:91 12-86 12:76
57 12-83 1280 1285 12-83 12-81 1273 12:63
60 12-62 1257 12-55 12-58 12:59 1248 12-36
63 12:29 1226 1229 12-28 12:25 12-12 12-00
66 11-89 11-87 11-87 11-88 1183 11:66 11-54
69 11-3¢ 11-37 11-37 11-36 11-33 11-13 10-99
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¢s5=38:3; (b) the same, but with cas=cs5=8-5, a mean
value between our css and css; (¢) the same, but with
caa=Cs5 =83, the value obtained for css which was
more directly accessible than css. Should the Voigt
theory be applicable, then the experimental values of
@r would have to conform to tables such as (b) or (c).
It can be seen that column (a) fits the experimental
values better than the other two.

The @Qr have also been calculated with the c;;
obtained from the a; computation; these differed from
the experimental values a little more than the cal-
culated values of column (a), thus proving that the
results of our ‘gh’ calculation fit the outer curve of
the elastograms better than those of the ‘a;’ calcula-
tion. Our final results for the adiabatic elastic con-
stants are, thus:

c11= (669 + 0-12).10%° dyne cm.-2
033: 32'8 i 0‘04

ciz= 19-9+0-3
Cqa = 8'8 i 008
css= 83+0-09

whence it follows that

C4a—Cs5=0-5+0-17
(caa—Cs5)/aa=6% (£ 2%) .

The effect on the results of misorientation of the
specimen, for measurements along Y and Z, may be
illustrated as follows. A deviation of 3° from their true
directions within the YZ plane of the ¥ and Z axes,
would change the values of c¢i1, €33, caa and cs5 from
66-90, 32-80, 8-80, 8-:30 to 66-78, 32-82, 8-87, 8-33; and
deviations of 3° in any other direction would cause
still smaller changes. So, even a deviation of 1° would
cause errors smaller than our quoted errors and
negligible compared with cs—cs5. As has been men-
tioned in Section 3, all the errors in orientation amount
to no more than a few minutes of arc.

Finally, we wish to stress that the errors quoted are
for the relative (not absolute) values of the cj;.

The difference of 69 (+2%) between ca and css5 is
m contradiction with the classical theory of crystal
elasticity but fits into the more general theory put
forward by Laval. The amount of this difference is
much too large to be accounted for by the coupling
between elastic and piezoelectric properties.

In a recent paper Joel & Wooster (1958b) reported
that a difference of 8%, (+19%) between csy and css
could be detected on Zwicker’s (1946) elastogram of
ADP. The estimate of the error, +1%, was probably
too optimistic as we did not at that time consider the
effect of the errors in ¢;; and cs3 on the outer curve.
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The Crystal and Molecular Structure of dl-Alphaprodine Hydrochloride

By G. Kartaa,* F. R. AHMED AND W. H. BARNES
Pure Physics Division, Naitonal Research Council, Ottawa, Canada

(Received 30 October 1959)

The structure of the hydrochloride of di-alphaprodine (dl-x-1:3-dimethyl-4-phenyl-4-propionoxy
piperidine) has been determined by the isomorphous-replacement method with the aid of data for
the hydrobromide. Zero-level normal, and first-level generalized, projections along the three axes
have been employed. The structure has been refined by three-dimensional Fourier and differential
syntheses. The stereochemical configuration found for the alphaprodine molecule agrees with that
of one of four possible isomers and confirms that proposed by Beckett and co-workers on conforma-
tional and other grounds. The piperidine ring has the chair form with the phenyl ring equatorial and
the propionoxy chain axial; the methyl group on C(3) is trans to the phenyl ring on C(4).

Introduction

Ziering & Lee (1947) were the first to prepare dl-1:3-di-
methyl-4-phenyl-4-propionoxy piperidine, C16H2sNOs,
and to show that it can be obtained in two diastereo-
isomeric (« and B) forms which have since received
the common names, alphaprodine (Nisentil®) and
betaprodine. Alphaprodine hydrochloride has a higher
melting point and lower analgesic potency than the
corresponding salt of the beta isomer.

* National Research Council Postdoctorate Fellow, now in
the Biophysics Department, Rosewell Park Memorial Institute
Buffalo, N.Y.

Four cis—trans configurations of the molecule of
1:3-dimethyl-4-phenyl-4-propionoxy piperidine are
possible according to the relative positions of H and
CH; attached to C(3) and of OCOC:H; and CeH;
attached to C(4) of the piperidine ring. Assuming that
this ring has the chair form, the several possible
isomers are illustrated in Fig. 1, where Ph=phenyl
(CeHs), Pr=propionoxy (OCOC:Hs), Me = methyl (CHs),
a=axial to the piperidine ring, e=equatorial to the
piperidine ring.

Some important relationships are summarized in
Table 1, from which it is apparent that the cts or trans
designation of the members of a single pair of prodine



